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Abstract
We investigate the dynamics and geometric phases of a time-dependent
singular oscillator. We construct certain Gaussian wave packet solutions of
the corresponding Schrödinger equation, relate the latter with the classical
equation of motion and explore the relationship between the associated quantum
and phase angles. It is shown by a simple geometrical approach that the
geometrical phase is connected with the classical nonadiabatic Hannay angle
of the generalized harmonic oscillator. Our geometric approach is based on
a rule for a ‘natural transport’ of the complex two-dimensional vector in the
phase space and the results obtained are quite suggestive of similarities to the
quantum mechanical two-state evolution.

PACS numbers: 03.65.Ta, 03.65.Ge, 03.65.Sq

Explicitly time-dependent problems present special difficulties in classical and quantum
mechanics. However, they deserve detailed study because very interesting properties emerge
when, even for simple linear systems, some parameters are allowed to vary with time. For
instance, particular recent interest has been devoted to systems in which evolution originates
geometric contributions [1–6]. One of these, the generalized harmonic oscillator, has invoked
much attention to study the nonadiabatic geometric phase for various quantum states, such as
Gaussian, number, squeezed or coherent states, which can be found exactly [7–10]. Recently,
the geometric phase for a cyclic wave packet solution of the generalized harmonic oscillator
and its relation to Hannay’s angle were studied by Ge and Ghild [7]. They introduce the
time-dependent Heller Gaussian wave packet form [11]

�(x, t) = exp(h̄−1[−α(x − q)2 + ip(x − q) + k]) (1)

centred around the classical guiding trajectory (q, p), and proceed to derive equations of
motion for the complex or real parameters (α(t), q(t), p(t) and k(t)) which serve to specify
a complete quantum wave packet.
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On the other hand, the number of exactly solvable quantum time-dependent problems is
very restricted; one of the rare examples admitting exact solutions of the Schrödinger equation
and have been studied intensively lately [12–20] is the quantum time-dependent generalized
singular oscillator

H = 1

2

[
Z(t)p2

x + Y (t)(pxx + xpx) + X(t)x2 +
Z(t)l2

x2

]
(2)

where x and px = −ıh̄∂/∂x are the quantum operators, X(t), Y (t) and Z(t) are an arbitrary
function of time and l is an arbitrary constant which could be zero. The only known
solution of this model are given by the Laguerre functions [15–20]. A distinguished role
of the Hamiltonian (2) is explained by the fact that, in a sense, it belongs to a boundary
between linear and nonlinear problems of classical and quantum mechanics. For this reason,
it was used in many applications in different areas of physics. For example, it served as an
initial point in constructing interesting exactly solvable models of interacting N-body systems
[12, 13]. It was also used for modelling diatomic and polyatomic molecules [14]. It can
have some relation to the problem of the relative motion of ions in electromagnetic traps [19].
Several types of exact solutions were also constructed [20].

The purpose of this letter is twofold: first, we elaborate on the dynamics of the wave packet
in the time-dependent harmonic oscillator with an inverse-square potential. We summarize a
number of results for wave packet dynamics and show that the time evolution can be described
in terms of classical concept; in the sense that the parameters of the wavefunction evolve
according to classical mechanics. We would, however, like to draw attention to the new
results: the analytical expression for the Gaussian wavefunction is obtained. Second, since we
are able to determine the canonical variables and the explicit form of the equations of motion,
we take this opportunity to decompose the time-dependent quantum global phase factor into its
geometric and dynamical parts. From the derived expression we observe that the geometrical
part can be interpreted as a ‘natural transport’ for a family of (homothetical centred) ellipses
and this is an important new result of this letter.

Since we are interested in the most general wave packet solution to the problem, we make
the ansatz

�l(x, t) = x(1/2−
√

(l/h̄)2+1/4) exp

{
1

h̄

(
1
2 (l + ipq)

[(
x − q

q

)2

+ 2

(
x − q

q

)]
+ k

)}
(3)

where �l(x, t) is given as the product of a squeezed Gaussian wave packet of type (1) and a
function x of order

(
1/2 −

√
(l/h̄)2 + 1/4

)
, and where q(t), p(t), k(t) are auxiliary functions

of time, to be determined in what follows. This wavefunction is not normalizable for general
l. However, it is for particular values of l ∈ ] − √

3/2,
√

3/2[ (see the Gaussian wave packet
�l(x, t) below). Morever, for these geometrical phase studies, the wave packets do not have
to be normalizable for general l. When l = 0, equation (3) with the (−) sign (for the power of
x) will reduce to a refined version of the standard semiclassical technique [7, 11], namely the
Gaussian wave packet (1) solution of the generalized harmonic oscillator.

Inserting equation (3) into the Schrödinger equation

ih̄
∂�l

∂t
= H�l (4)

and then comparing the coefficients of various powers of (x − q), leads to

(x − q)2 : iβ̇ = 2Zβ2 − 2iYβ +
X

2
(5)
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where β = −ip/(2q) − l/(2q2),

(x − q)1 : −2i

(
β − l

2q2

)
(q̇ − Zp − Yq) +

(
ṗ + Xq + Yp − Zl2

q3

)
= 0 (6)

(x − q)0 : pq̇ + ik̇ = 1

2

[
Zp2 + 2Ypq + Xq2 +

Zl2

q2

]
− Z(t)l2

q2

+ 2h̄
(
1/2 −

√
(l/h̄)2 + 1/4

) (
Zβ − i

Y

2

)
. (7)

The (x − q)2 condition determines β by a nonlinear equation of the Riccati form, which
can be transformed to a linear system by introducing a two-dimensional vector �V T ≡ (Q,P )

and

β ≡ − i

2

P

Q
(8)

where Q and P may be complex. In order that β satisfies (5), it is sufficient that �V obey the
classical equation

�̇V =
(

Q̇

Ṗ

)
=

(
Y Z

−X −Y

)(
Q

P

)
= −H �V . (9)

The (x − q)1 condition makes sense if

q̇ = Zp + Yq ṗ = −Xq − Yp +
Zl2

q3
(10)

and determines the complex guiding trajectory associated with the classical Hamiltonian

H(q, p, t) = 1

2

[
Z(t)p2 + Y (t)(pq + qp) + X(t)q2 +

Z(t)l2

q2

]
. (11)

The (x−q)0 condition determines the time-dependent global phase and normalization included
in k which can be rearranged in the form

k(t) − k(0) = i
∫ t

0

(
L(t ′) +

Z(t ′)l2

q2
− 2h̄

(
1 −

√
(l/h̄)2 + 1/4

)
(Zβ − iY/2)

)
dt ′ (12)

where L(t) = p(q, q̇)q̇ − H [q, p(q, q̇), t]. Examining the three terms in the expression
(12) for k, we see that the first two give i{(pq) − p(0)q(0)}/2. The remaining term,
γl(t) = −2

(
1 −

√
(l/h̄)2 + 1/4

) ∫ t

0 (Zβ − iY/2) dt ′, is the phase factor accumulated in the
nonadiabatic evolution.

At this level, we can consider that the quantum problem is completely solved and the
solution (3) can be rewritten as a simple wave packet

�l(x, t) = x(1/2−
√

(l/h̄)2+1/4) exp

(
1

h̄
{−β(t)x2 + β(0)q2(0) + k(0) + iγl(t)}

)
which is also a solution to the Schrödinger equation for the generalized singular oscillator. The
reader can easily guess that the time-dependent global phase factor,namely 2

∫ t

0 (Zβ−iY/2) dt ′,
can be decomposed into a dynamical part and a geometrical one. From the phase-corrected
wavefunction ξl(x, t) = x(1/2−

√
(l/h̄)2+1/4) exp(−β(t)x2/h̄), which is not the solution to the

Schrödinger equation, one can in principle follow the usual method to calculate the geometrical
phase.

In what follows we identify the geometrical phase factor in terms of the classical angle
θH (t) (Hannay’s angle), and we obtain a new analytical expression for the geometrical phase
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factor based only on a simple geometrical approach in the phase space description. This
treatment allows one to view the classical–quantum correspondence in a new light and yields a
novel classical interpretation of quantum phenomena. Before that, we derive the geometrical
part by confirming whether there exists a natural transport (with respect to the symplectic
structure) for a family of (homothetical centred) ellipses, and finally, we re-establish the
connection between the quantum phase and the classical angle.

In the literature, θH (t) is usually defined in relation to the introduction of time-dependent
canonical transformations. However, a simple geometrical approach (hence not calculational)
may be formulated to deduce the decomposition of the total phase factor (12). It is well
known (see, for example, [1, 2]) that Hannay’s angle is defined when the closed curves of
constant action variables return to the original curves after a time evolution. In this letter we
are interested in the infinitesimal transport, thus the cyclic properties of the closed curves of
constant action variables will be omitted in the following.

Let us consider the classical equation (9) which allows a geometrical interpretation of
the evolution in phase space. The main property of this evolution is that it is linear and area
preserving. This implies that any initial conditions at t = 0 on a centred ellipse E(0) in
phase space evolve at time t on a similar ellipse E(t) of the same area. A little thought shows
that, more precisely, two points on E(0) whose parameters differ by 	ϕ evolve in points
on E(t) with the same difference of parameter. The reason is that the standard parameter
ϕ (ϕ ∈ [0, 2π]) which parametrizes a point M on an ellipse is such that it is proportional to
the area swept by the vector �v = −−→

OM.
Analytically, let �E be a complex two-dimensional vector; it is known (for instance

from optics) that one can describe (homothetical centred) ellipses as the set of vectors
Re[A e−iϕ �E(t)]. The natural origins of these ellipses are the points associated with ϕ = 0.

A and ϕ may be considered as the (‘action-angle’) coordinates of a point in phase space, with
respect to the family associated with �E(t). However, a more geometrical approach may be
formulated as follows: is there a transport from the family of ellipses associated with �E(0)

to that associated with �E(t) which is natural with respect to the symplectic structure in phase
space? Clearly, this transport must preserve area. This implies that �E∗ ∧ �E is kept fixed, i.e.
for an infinitesimal transport δ �E: Im( �E∗ ∧ δ �E) = 0. But this is not sufficient since it remains
to give precisely how one point (for example, the origin) is transported: for this, one simply
requires that the area which is swept by the vectors �v(ϕ) (on an ellipse) during the transport
has, when averaged over ϕ, a mean value equal to zero; this implies Re( �E∗ ∧ δ �E) = 0.

Therefore, the transport is defined by

�E∗ ∧ δ �E = 0. (13)

Hannay’s angle is then obtained by setting �E + δ �E = ( �E + d �E) exp(−idθH ), as

θ̇H =
�E∗ ∧ �̇E

i( �E∗ ∧ �E)
. (14)

Obviously equation (14) can be considered as a new result for the nonadiabatic Hannay angle
of the generalized harmonic oscillator.

Within such a formalism the above remarks justify that the general solution of
equation (9) may be looked for in the form

�V (t) = A e−i(θ(t)+ϕ) �E(t) (θ(0) = 0) (15)

with i �E∗ ∧ �E conserved and A and ϕ fixed (A and ϕ are the conditions measured with respect
to the family �E(0)). Postponing the precise calculation of θ(t) and �E(t), some interesting
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remarks can be deduced from the formula (15). The first one is that the quadratic quantity in
phase spaces q and p,

I = |�v ∧ �E|2 (�v = Re[ �V (t) = A e−i(θ(t)+ϕ) �E(t)]) (16a)

is invariant ( �E ∧ �E = 0 and �E∗ ∧ �E constant) and is known as the Lewis invariant. The
second one is that θ(t) which defines an angular drift of the origin points of �E(0) (measured
with respect to �E(t)) is naturally decomposed into a geometrical part (Hannay’s angle) and a
dynamical one,

θ̇ =
�E∗ ∧ �̇E

i( �E∗ ∧ �E)
+

�E∗ ∧ H �E
i( �E∗ ∧ �E)

. (16b)

(This relation is obtained by inserting �V (t) in classical equation (9) and making the wedge
product with �V ∗(t).)

If one wants to explicitly calculate θ̇H and θ̇ , it will be convenient to normalize �E such
that −i( �E∗ ∧ �E) = 4I (which fixes the ellipse area), and to parametrize the ellipse as

�E(t) =
( √

QQ∗

2iβ(t)
√

QQ∗

)
(17)

where the first component of �E is taken to be real. Then, one can find, making use of (14) and
(16b), that the Hannay angle is

θ̇H = −i
β̇

β + β∗ − i

2

d

dt
ln(QQ∗) (18)

and the total angle is

θ̇ = −2(Zβ − iY/2) − i

2

d

dt
ln(QQ∗). (19)

The choice of �E(t), equation (17), corresponds to the parametrization of the ellipse in phase
space (q, p) as

q = A
√

QQ∗ cos θ

p = A
√

QQ∗{i(β − β∗) cos θ + (β + β∗) sin θ}
(20)

and to the quadratic invariant equation (16a)

I = PP ∗q2 − (PQ∗ + P ∗Q)pq + QQ∗p2 (21)

associated with the generalized harmonic oscillator HGHO = 1
2 [Z(t)p2 + 2Y (t)pq + X(t)q2].

On comparing equation (19) and the time-dependent phase factor γl(t) (equation (12)),
we see that γl(t) is the quantum counterpart of θ(t) (equation (19)),

γl(t) = (1 −
√

(l/h̄)2 + 1/4)

[
θ(t) +

i

2
ln

{
Q(t)Q∗(t)
Q(0)Q∗(0)

}]
(22)

where the logarithm term goes ‘downstairs’ as the time-dependent normalization factor in
�l(x, t). The remaining term in γl(t) is recognized as the phase factors acquired by the wave
packet in its evolution and it is the quantum counterpart of equation (19). This establishes a
useful relationship between the associated quantum phase of the generalized singular oscillator
and the classical angle of the generalized harmonic oscillator.

Then, we can reach a simple relation between the geometrical phase for the quantum
singular oscillator and the nonadiabatic Hannay angle associated with the generalized harmonic
oscillator

γ̇ G
l (t) = −(

1 −
√

(l/h̄)2 + 1/4
) �E∗ ∧ �̇E

4I
(23)
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where the first part is independent of h̄ and is equal to the Hannay angle of the generalized
harmonic oscillator, the second part depends on h̄ and l.

In conclusion, we have constructed certain Gaussian wave packet solutions of a time-
dependent Schrödinger equation for the singular oscillator, related the latter to the classical
equation of motion and explored the relationship between the associated quantum phases and
classical angles of the generalized harmonic oscillator. The classical version of the generalized
harmonic oscillator has been discussed, and a new expression for the nonadiabatic Hannay
angle has been obtained by confirming whether there exists a natural transport (with respect
to the symplectic structure) for a family of (homothetical centred) ellipses. The invariant
associated with the generalized harmonic oscillator is deduced in a simple way. When the
parameter l vanishes, we see that the Gaussian wave packet �l(x, t) reduces to a refined version
of the standard semiclassical technique which corresponds to the evolution of the ‘ground’
state of the time-dependent generalized harmonic oscillator, and the geometrical phase is equal
to one-half of the classical geometrical angle. This is just what was obtained in [7].
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